

Kerry Team

Process optimization technology and applications:

- Eoin Lalor Global
- Deborah Waters Global
- Chika Ezeani North America

Supported by application experts in:

- Enzymology
- Brewing ingredients
- Taste & flavor technologies

Commercial support:

- Aaron Dow, Sales
- Amanda Wolff, Marketing

Craft distilling continues to grow in the US

The craft spirits market is projected to grow, witnessing a CAGR of 18.87% during the forecast period (2020-2025). -Mordor Intelligence

> The craft spirits market has the potential to grow by USD 36.82 billion during 2021-2025 [and] 42% of the growth will originate from North America. -technavio

The market will be ACCELERATING at a CAGR of almost The market is MODERATELY **CONCENTRATED** with few players who occupy the market share

INCREMENTAL **GROWTH** \$7.47 bn

The year-over-year growth rate for 2018 is estimated at

^21.19%

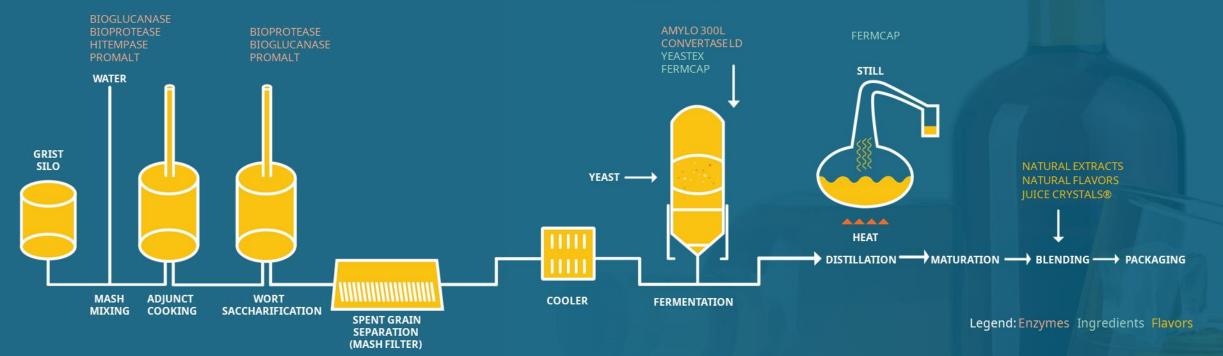
69% of the growth will come from the ON-TRADE **CRAFT SPIRITS**

One of the KEY DRIVERS for this market will be the growing demand for craft spirit among millennials and GenX consumers

∜technavio

The global craft spirits market...is expected to grow...owing to growing consumer tastes and preferences towards unconventional and experimental alcoholic beverages.

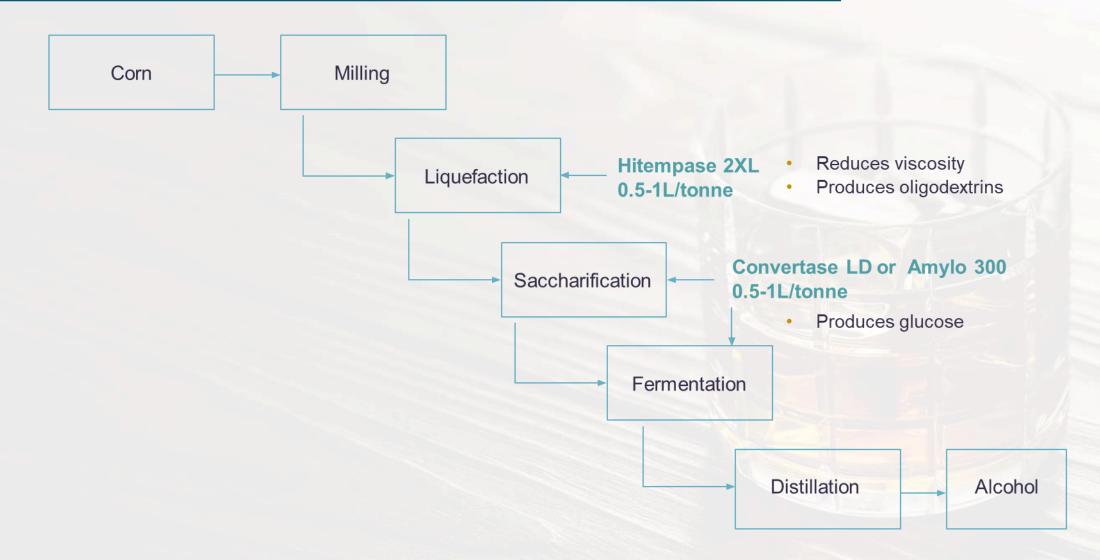
-Grand View Research


Enzymes, Ingredients & Flavors

SUSTAINABLE SOLUTIONS ACROSS THE DISTILLING PROCESS

- Complete liquefaction of adjunct
- Obtain maximum extract with good run-off/mash filter throughput
- Dextrin/glucan degradation
- Increased fermentability

- · Reduced foaming
- Increased fermentability
- Reduced foaming



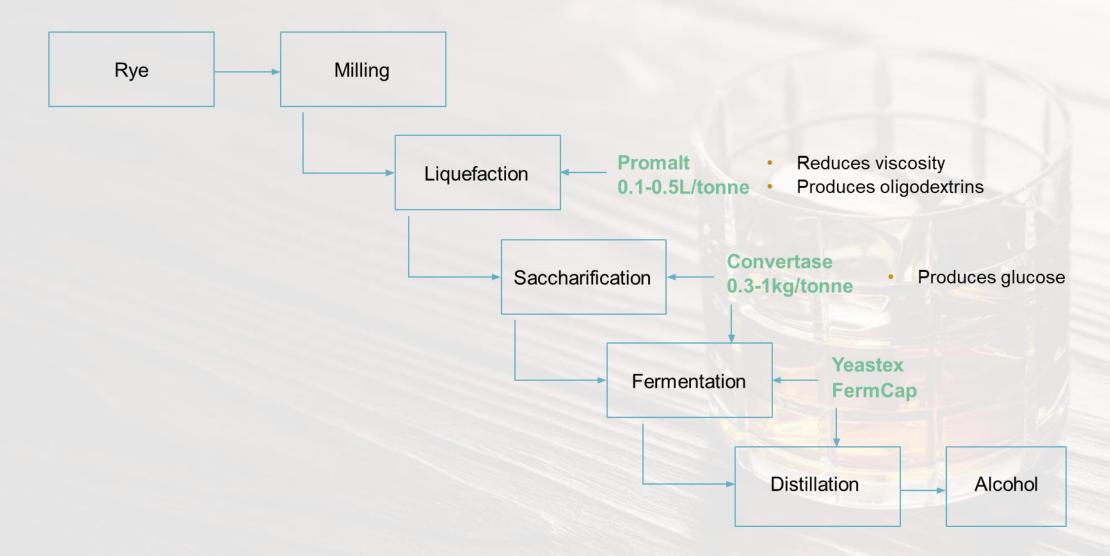
Content

- Applications
 - Corn
 - Rye
 - Wheat
 - Malt/Barley
- Ingredient Summary
- Sustainability

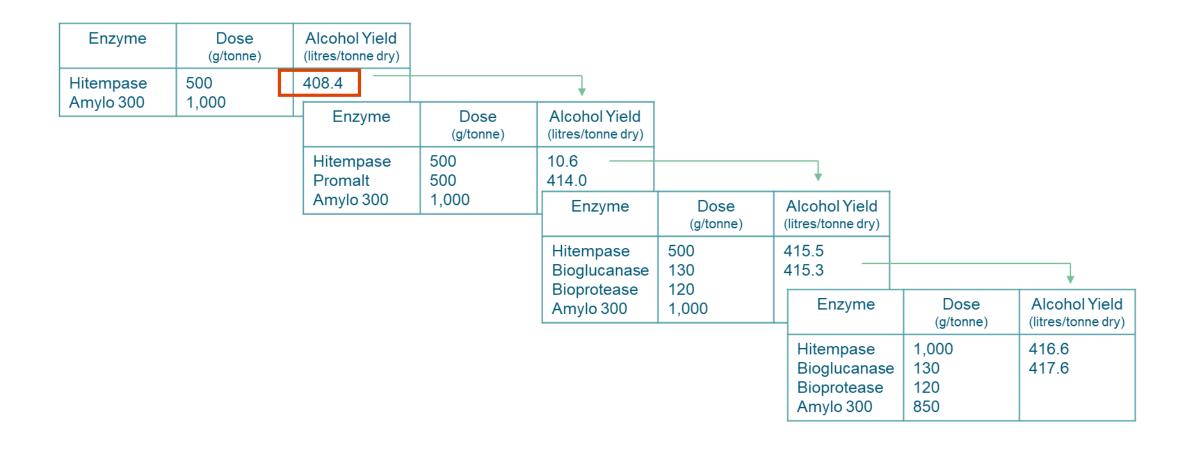
Enzymes for Corn Processing

Corn process yield optimization examples

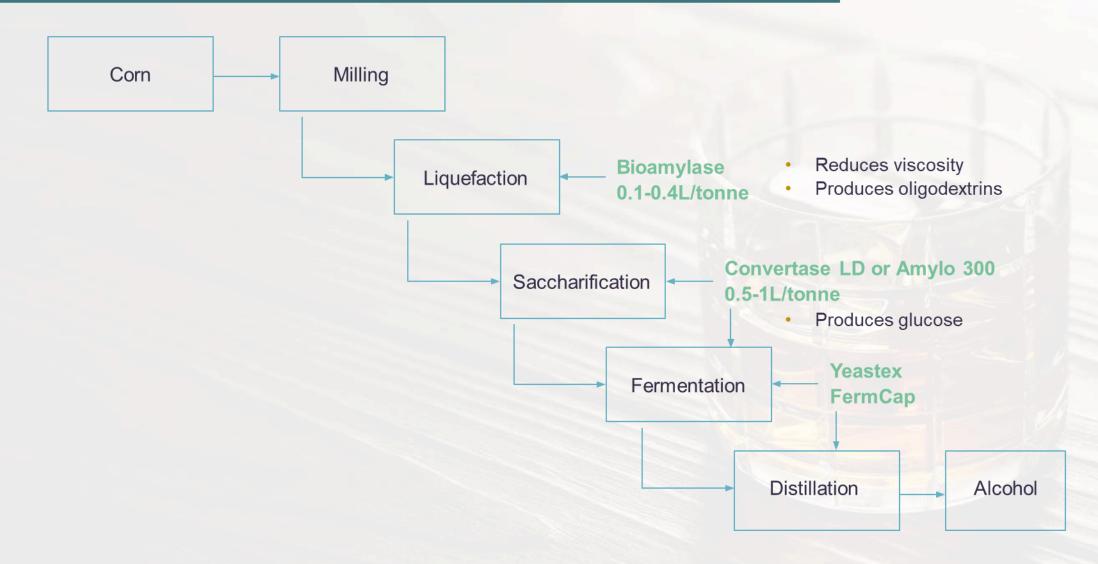
Extract optimization with Hitempase STXL conc batch process:


	Kg/t Corn grits	۰Р	%Extract (w/w dry)
Hitempase STXL Conc	0.4	12.8	74.8
	0.5	12.8	75.6
	0.7	12.8	76.5
	0.9	13.1	79.8

Extract optimization with Hitempase STXL and amylo continuous process:


Enzyme formulation	2 hours at 63°C		4 hours at 63°C		5 hours at 63°C	
, ionnaidhe	°Brix	Sugars (g/l)	°Brix	Sugars (g/l)	°Brix	Sugars (g/l)
Kerry 1	22.5	76.99	22.5	111.74	23.55	139.47
Kerry 2	23.19	96.92	22.5	125	23.06	144.02
Kerry 3	22.56	106.88	22.5	178.55	23.06	169.38

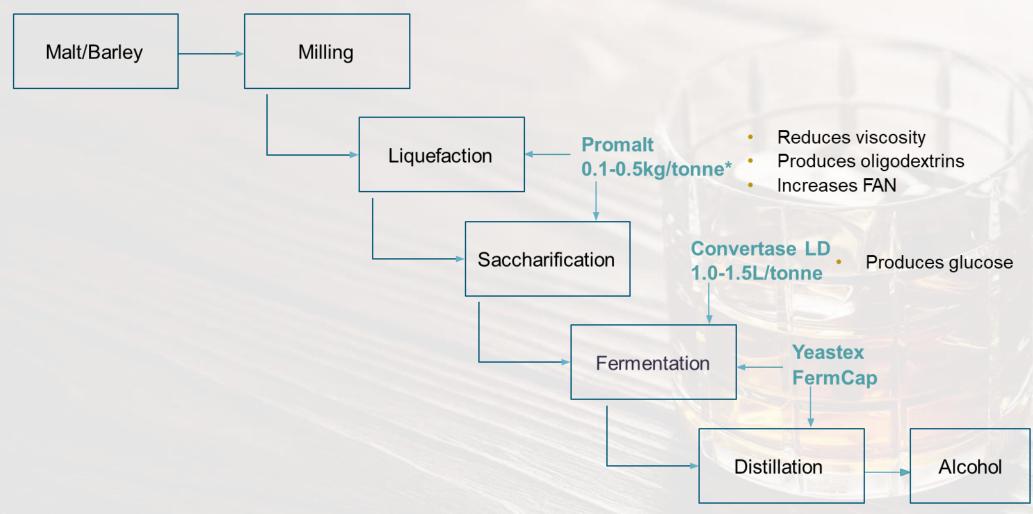
Trial	Hitempase on mash in 0.3 L/t starch	Amylo in saccharfication stand L/t
Kerry 1	70°C → 90°C. Hold for 50 min.	1.0
Kerry 2	70°C → 90°C. Hold for 60 min.	1.0
Kerry 3	70°C → 90°C. Hold for 60 min.	1.2


Enzymes for Rye Processing

Rye process yield optimization examples

Enzymes for Wheat Processing

Wheat process yield optimization examples


Hitempase 500ml/t wheat.

Add Hitempase (500ml/tonne wheat) and raise mash to 90-100°C and hold for 20-30 min. Cool to 30°C and add Amylo 300 (on wheat) and ferment for ~60 hours.

Amylo optimization:

Amylo 300 (g/tonne wheat)	Alcohol yield (L/tonne)
150	407.9
200	414.9
250	414.1

Enzymes for Malt/Barley Processing

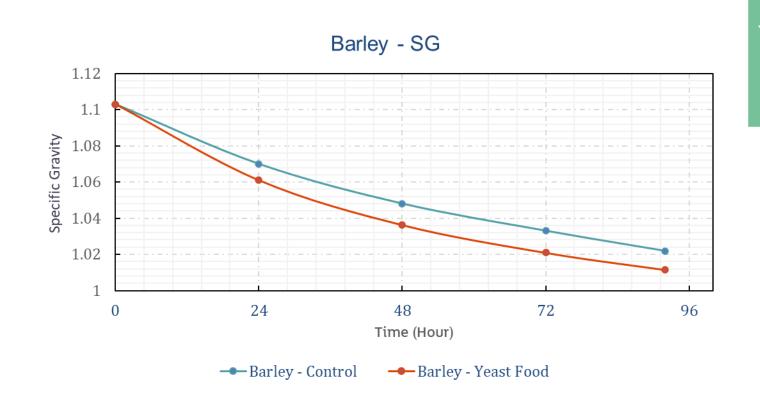
^{*} Dose rate on barley

Barley process yield optimization examples

25% barley brews

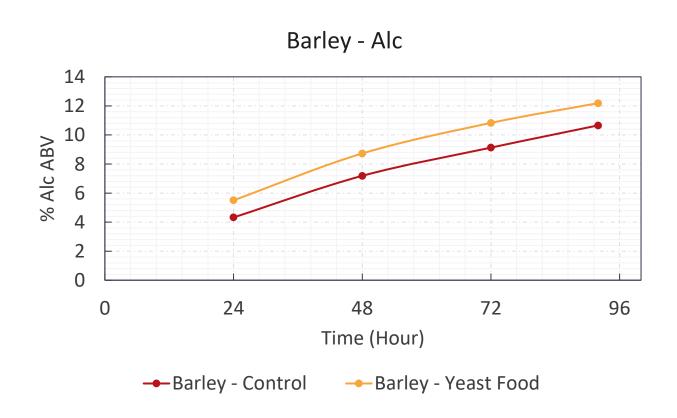
Enzyme	Dose (g/tonne)	Alcohol Yield (litres/tonne dry) 72 hr	Alcohol Yield (litres/tonne dry) 90 hr
Amylo 300	1,000	414.0	416.0
Amylo 300	850	415.0	415.9

Hitempase (500 g/tonne), Bioprotease N100L (120 g/tonne) and Bioglucanase GB (130 g/tonne) were added to all brews


Yeast food solutions

Benefits

- Enhanced fermentation rate
- High assimilable nitrogen
- Lower cost-in-use



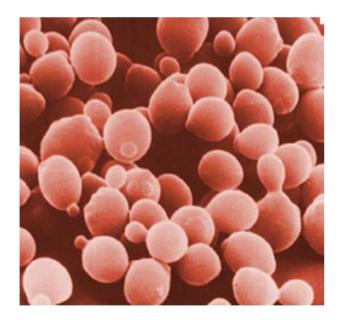
Reduce specific gravity in barley fermentation

Yeastex Trial
Number 1

Increase % alcohol yield in barley fermentation

Yeastex Trial
Number 1

Yeastex S speeds up fermentation and delivers higher LPAs


Yeastex™ | Blend of amino acids, minerals and vitamins

Improve process efficiency with yeast nutrients

Developed for brewing propagation & fermentations

Benefits

- Improved fermentation performance
- Increased yeast cell count
- Increased yeast viability/vitality
- Increased attenuation/alcohol yields

FermCap™ | Silicone-based antifoam

Improve process efficiency with anti-foam

Developed for brewing propagation & fermentations

Benefits

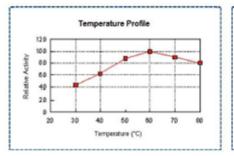
- Increased FV capacity: up to 7-15%
- Improved CO2 recovery
- Control over foaming in stills
- Optimization of CIP processes/cycles

Kerry Enzymes & Ingredients Distilling Portfolio

PRODUCT	AREA OF ADDITION	ENZYME ACTIVITY	FUNCTION	BENEFIT	GM STATUS
Promalt	Mash Vessel	Enzyme system	 Saccharification & viscosity reduction 	 Improved extract yields/viscosity reduction Improved free alpha amino nitrogen (FAAN) 	Non-GM
Hitempase	Mash Vessel/Jet Cooker	Bacterial amylase	Liquefaction	 Improved extract yields, Reduce mash viscosity Decrease effect of un-gelantinized/starch positive wort Improve grist due to liquefication of adjuncts – maize, rice, sorghum 	Non-GM
Bioprotease	Mash Vessel	Protease (Bacterial)	Fermentation	 Improved extract yields, Improved free alpha amino nitrogen (FAAN) 	Non-GM
Bioglucanase GB	Mash Vessel/ Fermenter	Beta-glucanase	Filtration & viscosity reduction	 Improved mash filtration Improve grist due to poor quality malt or low % barley adjunct 	Non-GM
Convertase LD	Mash Vessel/ Fermenter	Glucoamyase	Saccharification	Improve wort/wash fermentability	Non-GM
Amylo 300	Mash Vessel/ Fermenter	Glucoamylase	Saccharification	Improve wort fermentability	Non-GM
FermCap	Fermentation	Anti-foam	Fermentation	Reduce foam during fermentation and distillation	Non-GM
Yeastex	Fermentation/yeast propagation	Yeast Nutrients	Fermentation	Improve fermentation performance	Non-GM

Enzyme

Brewing Ingredient

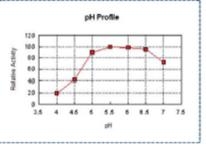

Bioglucanase® FS2000

Rye processing viscosity reduction

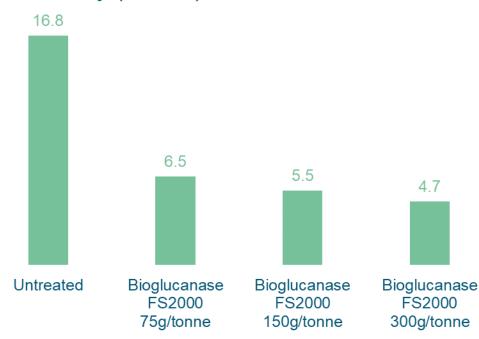
Bioglucanase FS2000 is a high temperature stable (>80°C) glucanase/cellulase/xylanase enzyme. It is very effective in high adjunct brewing, hydrolyzing non-starch polysaccharides (glucans and arabinoxylans) which can reduce brewhouse extract yield, mash and beer filtration.

Benefits

- Added during mashing of 100% rye grist
- Large reduction in viscosity
- Easier to process
- Faster filtration


18

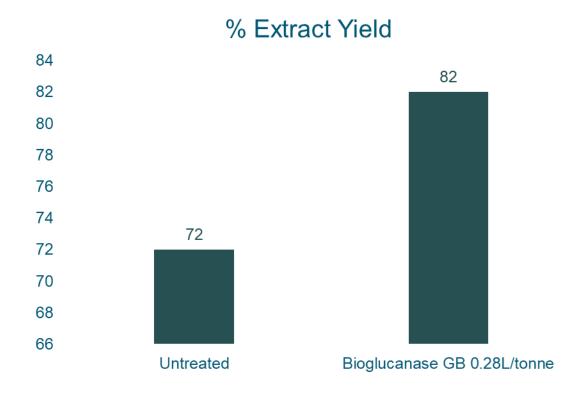
16


14

12

10

Viscosity (mPa.s) Reduction 13°P Wort

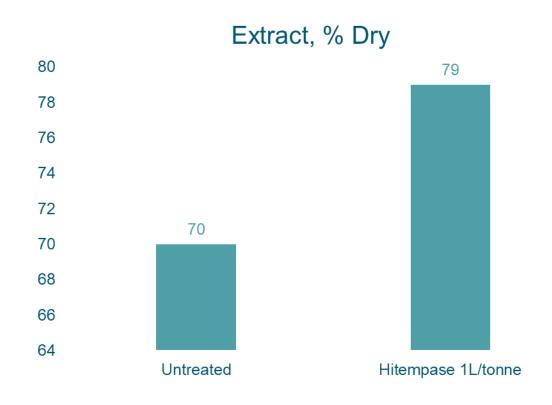

Bioglucanase® GB

Optimize process by increasing extract yield

Bioglucanase GB is an enzyme preparation which contains cellulase, hemicellulase and betaglucanase activities. The activities present in Bioglucanase GB are effective in the degradation of the complex carbohydrates found in plant cell walls.

Benefits

- Added during mashing of malt grist
- Increase extract yield
- Reduction in viscosity
- Easier to process
- Faster filtration


Hitempase™

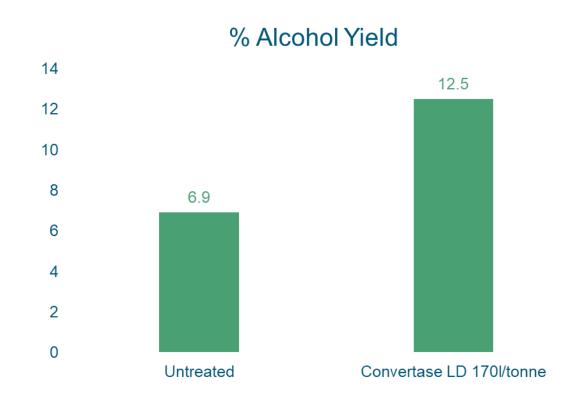
Increase extract yield by 13%

HITEMPASE is a heat stable endo alpha amylase used in the brewing industry for effective liquefaction of starch in high adjunct (barley, rice, maize, sorghum) brewing/distilling.

Benefits

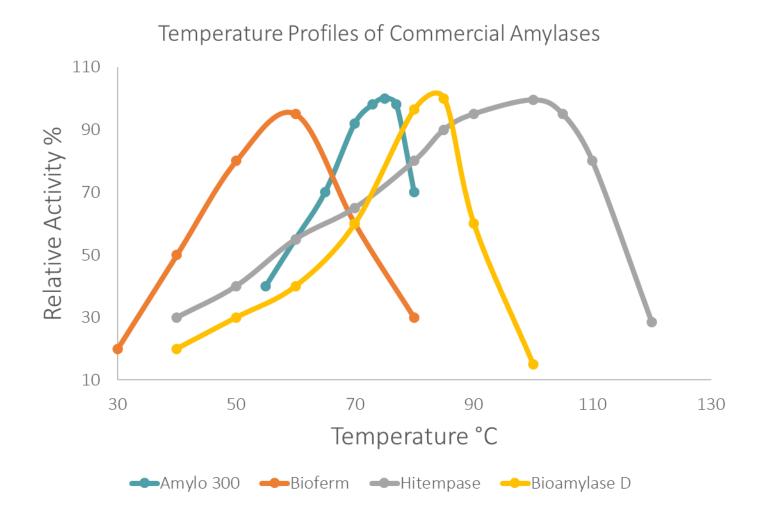
- Thermostable amylase
- Increase in extract
- High temperature starch liquefaction
- Effective in mash conversion vessel with barley and/or cereal cooker with other adjuncts

Hitempase STXL added during mashing of 40% barley, 60% malt grist


Convertase™ LD

Increase alcohol yield by over 5%

Convertase LD is glucoamylase specifically developed to optimize alcohol yields in distillery fermentations by optimize glucose production in mash, wash and fermenter.

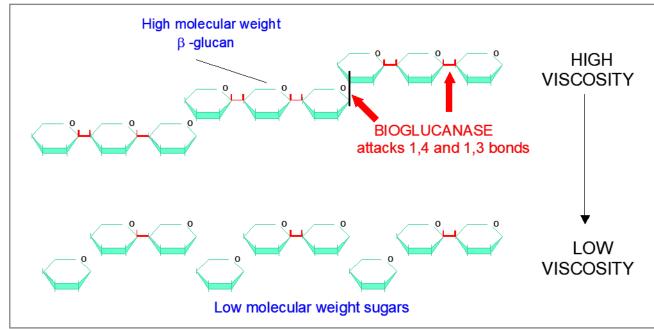

Benefits

- Increases fermentability
- Continues working during fermentation
- Delivers high alcohol potential

Convertase LD added to a mixed malt/barley mash during fermentation

Enzyme activity: Amylase temperature profiles

Improve filtration rates and extract yields with enzymes


Variable malt quality, mash filtration and high wort viscosity

Bioglucanase GB, Bioglucanase HAB, Bioglucanase

FS2000, Promalt

 High adjunct barley Bioglucanase GB

- 100% Barley or rye combinations
 Bioglucanase HAB
- 100% wheat or Rye
 Bioglucanase FS2000
- High adjunct
 Promalt range (Amylase/Glucanase/Protease)

Sustainable Solutions

Better Product

Better Process

Better Planet

Reduce Carbon Footprint & Energy Consumption

RAW MATERIAL

Enzymes and processing aids increase extract yield, improve hop utilisation, and filtration efficiency. This reduces the amount of grain, hops & kieselguhr used / hl beer

MANUFACTURING

Enzymes and processing aids save energy, water and reduce the use of cleaning chemicals

DISPOSAL

Clarification aids help reduce amount of Kieselguhr sent to landfill

Case Study: Reducing Carbon Footprint using Kerry Enzymes

Bioglucanase[™] can help brewer's produce beer with **35% barley** instead of 100% malt, saving ~6,333 mt CO₂e per annum.*
That's the same as:

1.6 installed wind turbines

c14,500 barrels of oil

Energy use for one year for c.700 homes

Why partner with us?

1

Complete portfolio for process optimization and product development

Our teams of master brewers/distillers, flavorists and enzyme experts take a holistic approach to help you:

2

Provide technical support, improve process efficiencies & reduce cost

3

Expand on taste and flavors

4

Sustainability benefits & reduce energy consumption

